Phosphoglycerate Mutases Function as Reverse Regulated Isoenzymes in Synechococcus elongatus PCC 7942
نویسندگان
چکیده
Phosphoglycerate-mutase (PGM) is an ubiquitous glycolytic enzyme, which in eukaryotic cells can be found in different compartments. In prokaryotic cells, several PGMs are annotated/localized in one compartment. The identification and functional characterization of PGMs in prokaryotes is therefore important for better understanding of metabolic regulation. Here we introduce a method, based on a multi-level kinetic model of the primary carbon metabolism in cyanobacterium Synechococcus elongatus PCC 7942, that allows the identification of a specific function for a particular PGM. The strategy employs multiple parameter estimation runs in high CO2, combined with simulations testing a broad range of kinetic parameters against the changes in transcript levels of annotated PGMs. Simulations are evaluated for a match in metabolic level in low CO2, to reveal trends that can be linked to the function of a particular PGM. A one-isoenzyme scenario shows that PGM2 is a major regulator of glycolysis, while PGM1 and PGM4 make the system robust against environmental changes. Strikingly, combining two PGMs with reverse transcriptional regulation allows both features. A conclusion arising from our analysis is that a two-enzyme PGM system is required to regulate the flux between glycolysis and the Calvin-Benson cycle, while an additional PGM increases the robustness of the system.
منابع مشابه
Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control
Cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 show similar changes in the metabolic response to changed CO2 conditions but exhibit significant differences at the transcriptomic level. This study employs a systems biology approach to investigate the difference in metabolic regulation of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Presented multi-level kin...
متن کاملTranscript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation.
The regulatory network for acclimation of the obligate photoautotrophic fresh water cyanobacterium Synechococcus elongatus PCC 7942 to iron (Fe) limitation was studied by transcript profiling with an oligonucleotide whole genome DNA microarray. Six regions on the chromosome with several Fe-regulated genes each were identified. The irpAB and fut region encode putative Fe uptake systems, the suf ...
متن کاملDevelopment of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942
Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metab...
متن کاملMulti-Level Kinetic Model Explaining Diverse Roles of Isozymes in Prokaryotes
Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 con...
متن کاملEngineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions.
Synechococcus elongatus strain PCC 7942 strictly depends upon the generation of photosynthetically derived energy for growth and is incapable of biomass increase in the absence of light energy. Obligate phototrophs' core metabolism is very similar to that of heterotrophic counterparts exhibiting diverse trophic behavior. Most characterized cyanobacterial species are obligate photoautotrophs und...
متن کامل